4. Examination of adiabatic outflow from the nozzle in the range $\boldsymbol{\beta}(0-1)$

1 Aim of the experiment.

The aim of the experiment is to determine the maximum flow through the nozzle.

2 Introduction

The schematic representation of the test station is shown in fig. 1. Ambient air, with pressure p_{0} and temperature T_{0} flows through the gasometer (1) to the nozzle (2). The air flow is forced using a vacuum pump (5) that produces a sufficiently low (regulated) pressure p_{2} behind the nozzle. This pressure is regulated by the valve (4) on the bladder tank (3). Pressure drops are measured using differential pressure manometers (U-tubes); where Δh_{0} is the pressure drop before the nozzle, Δh_{1} is the pressure drop at the nozzle, and Δh_{2} - the pressure drop behind the nozzle. To measure the air flow rate, a gas meter and stopwatch are used.

Fig. 1. Schematic representation of the test station

3 Experiment description

The following steps should be performed (see fig. 2)
a. turn on the vacuum pump (5),
b. open the valve (4) so the Δh_{2} reaches 40 mmHg ,
c. be sure that pressure is stabilized and record drops of pressure $\Delta h_{0}, \Delta h_{1}$ and Δh_{2}
d. measure the volumetric air flow using gasometer (1) and stopwatch. Other words measure how many litres of air went through the nozzle within 1 minute
e. repeat measurement $\mathbf{1 0}$ times (!), increasing the drop of pressure Δh_{2} until the valve (4) is fully closed.

Fig. 2. The picture of the test station
When the critical parameter (i.e. $\beta_{c r} \approx 0,5$) is obtained at the narrowest point in the nozzle, the mass flow (\dot{m}) exiting the nozzle remain constant, and the pressure p_{1} is also constant, regardless to the farther decrease of the pressure behind the nozzle p_{2}.

4 Elaboration of the results

1. The pressure drops $\left(\Delta h_{0,1,2}\right)$ are to be converted into the unit of Pa using follothe wing equations:

$$
\begin{aligned}
& \Delta p_{0}=\Delta h_{0} \cdot 9,81 \cdot 13,6 \mathrm{~N} / \mathrm{m}^{2} \\
& \Delta p_{1}=\Delta h_{1} \cdot 9,81 \cdot 13,6 \mathrm{~N} / \mathrm{m}^{2} \\
& \Delta p_{2}=\Delta h_{2} \cdot 9,81 \cdot 13,6 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

2. Calculate the absolute pressures p_{1} and p_{2}, i.e. at the narrowest point of the nozzle and behind the nozzle respectively. Following equations shall be used for this purpose:

$$
\begin{aligned}
& p_{0}=p_{0}-\Delta p_{0} \\
& p_{1}=p_{0}-\Delta p_{1} \\
& p_{2}=p_{0}-\Delta p_{2}
\end{aligned}
$$

3. Compute factor $\boldsymbol{\beta}$ for each measurement:

$$
\beta=\frac{p_{2}}{p_{0}}
$$

and the critical value of $\beta_{c r}$

$$
\beta_{c r}=\left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}
$$

Where: k is the adiabatic exponent. For air; $\mathrm{k}=1,4$
4. Using perfect gas equation calculate mass air flow $\dot{\mathrm{m}}, \mathrm{kg} / \mathrm{s}$:

$$
\dot{m}=\frac{p_{0} \dot{V}}{R T_{0}}
$$

Where:
$p_{o}, T_{o}[P a ; K]$ - pressure and temperature of ambient air,
$\dot{V}\left[\mathrm{~m}^{3} / \mathrm{s}\right]$ - volumetric air flow,
$R[J / \mathrm{kg} \mathrm{K}]$ - individual gas constant for air.
5. Draw diagram $\dot{m}=f(\beta)$ and show on it $\boldsymbol{\beta}_{\text {cr }}$

Group date: \qquad hour:

no	$\begin{gathered} \Delta h_{0} \\ \mathrm{~mm} \\ \mathrm{Hg} \end{gathered}$	$\begin{gathered} \Delta h_{1} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \Delta h_{2} \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	\dot{V} $\mathrm{dm}^{3} /$ \min	$\begin{gathered} \dot{V} \\ \mathrm{~m}^{3} / \mathrm{s} \end{gathered}$	$\begin{aligned} & \mathrm{p}_{0} \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & \mathrm{p}_{1} \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & \mathrm{p}_{2} \\ & \mathrm{~Pa} \end{aligned}$	β	$\begin{gathered} \dot{m} \\ \mathrm{~kg} / \mathrm{s} \end{gathered}$
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

