4. Examination of adiabatic outflow from the nozzle in the range $\beta(0-1)$

1 Aim of the experiment.

The aim of the experiment is to determine the maximum flow through the nozzle.

2 Introduction

The schematic representation of the test station is shown in fig. 1. Ambient air, with pressure p_0 and temperature T_0 flows through the gasometer (1) to the nozzle (2). The air flow is forced using a vacuum pump (5) that produces a sufficiently low (regulated) pressure p_2 behind the nozzle. This pressure is regulated by the valve (4) on the bladder tank (3). Pressure drops are measured using differential pressure manometers (U-tubes); where Δh_0 is the pressure drop before the nozzle, Δh_1 is the pressure drop at the nozzle, and Δh_2 - the pressure drop behind the nozzle. To measure the air flow rate, a gas meter and stopwatch are used.

Fig. 1. Schematic representation of the test station

3 Experiment description

The following steps should be performed (see fig. 2)

- a. turn on the vacuum pump (5),
- b. open the valve (4) so the Δh_2 reaches 40 mmHg,
- c. be sure that pressure is stabilized and record drops of pressure Δh_0 , Δh_1 and Δh_2
- d. measure the volumetric air flow using gasometer (1) and stopwatch. Other words measure how many litres of air went through the nozzle within 1 minute
- e. repeat measurement **10 times (!)**, increasing the drop of pressure Δh_2 until the valve (4) is fully closed.

Fig. 2. The picture of the test station

When the critical parameter (i.e. $\beta_{cr} \approx 0.5$) is obtained at the narrowest point in the nozzle, the mass flow (\dot{m}) exiting the nozzle remain constant, and the pressure p_1 is also constant, regardless to the farther decrease of the pressure behind the nozzle p_2 .

4 Elaboration of the results

1. The pressure drops $(\Delta h_{0,1,2})$ are to be converted into the unit of Pa using follothe wing equations:

$$\Delta p_{0} = \Delta h_{0} \cdot 9,81 \cdot 13,6 \ ^{N}/m^{2}$$
$$\Delta p_{1} = \Delta h_{1} \cdot 9,81 \cdot 13,6 \ ^{N}/m^{2}$$
$$\Delta p_{2} = \Delta h_{2} \cdot 9,81 \cdot 13,6 \ ^{N}/m^{2}$$

2. Calculate the absolute pressures p_1 and p_2 , i.e. at the narrowest point of the nozzle and behind the nozzle respectively. Following equations shall be used for this purpose:

$$p_0 = p_0 - \Delta p_0$$
$$p_1 = p_0 - \Delta p_1$$
$$p_2 = p_0 - \Delta p_2$$

3. Compute factor β for each measurement:

$$\beta = \frac{p_2}{p_0}$$

and the critical value of β_{cr}

$$\beta_{cr} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$$

Where: k is the adiabatic exponent. For air; k=1,4

4. Using perfect gas equation calculate mass air flow \dot{m} , $\frac{kg}{s}$:

$$\dot{m} = \frac{p_0 \dot{V}}{RT_0}$$

Where:

 $p_o, T_o[Pa; K]$ – pressure and temperature of ambient air,

 \dot{V} [m^3/s] – volumetric air flow,

R[J / kg K] – individual gas constant for air.

5. Draw diagram $\dot{m} = f(\beta)$ and show on it β_{cr}

Groupdate: hour:.....

$\mathbf{p}_0 = \dots$ no Δh_0 Δh_1 Δh_2 \dot{V} \dot{V} \mathbf{p}_0 \mathbf{p}_1 \mathbf{p}_2 $\boldsymbol{\beta}$ \dot{m} mmmmHgmmHg $dm^3/$ m^3/s PaPaPa \mathbf{p}_1 \mathbf{p}_2 $\boldsymbol{\beta}$ \dot{m}										
no	Δh_0	Δh_1	Δh_2	<i></i> <i>V</i>	<i></i> <i>V</i>	p_0	p 1	p ₂	β	'n
	mm Hg	mm Hg	mm Hg	dm ³ / min	m³/s	Ра	Ра	Ра	β -	kg/s
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										