5. Isothermal process

1 Introduction

The aim of the experiment is verification of the Boyle- Mariotte law, expressed with the equation:

$$
p V=i d e m
$$

2 The experiment station description

The experiment station is composed of an elastic U-tube manometer, partially filled with a manometric liquid (fig. 1). The rigid left arm of U-tube manometers is ended with a valve (Z) opened and closed manually. Closing the valve causes the occurrence of a reservoir of the gas. The reservoir has constant cross-section and adjustable, (by the position of a manometric liquid), height $\left(L_{i}\right)$. The change of meniscus position is obtained by moving the right arm of the U - tube.

3 Experiment description

During the experiment, the volume of the gas reservoir above the manometric liquid in the left arm of the U-tube manometer shall be increased by lowering the right arm of the manometer. The volume of the gas is proportional to the height of the reservoir $\left(L_{i}\right)$.

Fig. 1. The test station

The tested gas (air) is in the left arm of the U-tube (fig. 1a). The initial pressure (i=1) is equal to the ambient pressure $\mathrm{p}_{1}=\mathrm{p}_{0}$ (valve opened). The volume change is performed after closing the valve (Z), before lowering the right arm of the U-tube (fig. 1b). The height of the liquid meniscus $\left(H_{p i}\right)$ shall be determined for a few corresponding, arbitrary values of $\left(L_{i}\right)$. The value of pressure $\left(p_{i}\right)$ of the gas in the reservoir in the left arm of the U-tube is the algebraic sum of the ambient pressure p_{0} and pressure which represents the height of liquid column $\left(\Delta H_{i}\right)$ in the U-tube (fig. 1b: the density of the manometric liquid is $\rho=0,87^{g} / \mathrm{cm}^{3}$, gravitational acceleration is $g=9,81 \mathrm{~m} / \mathrm{s}^{2}$)

4 Elaboration of results

Based on obtained results calculate the pressures (p_{i}) of the tested gas

1. Present the results as dependence $\mathrm{Y}=\mathrm{f}(\mathrm{X})$ on a coordinate system, where:

$$
\begin{aligned}
& X=\frac{L_{1}}{L_{i}} \\
& Y=\frac{p_{i}}{p_{1}}
\end{aligned}
$$

2. Establish the trend line as a representation of first-degree polynomials as well as R^{2}.

If the law of Boyle- Mariotte is fulfilled, the points on the coordinate system should be gathered around a straight line which starts at the beginning of the system (intersect with point 0,0 in the chart)

Date: $\mathbf{p o t}_{\mathrm{ot}}=. ~ \mathbf{t}_{0}=. ~ \mathbf{T}_{0}=.$.

\mathbf{i}	1	2	3	4	5	6	7	8	9	10
L_{i} mm										
$H_{p i}$ mm										
$\Delta H_{p i}$ mm										
P_{i} MPa										
X										
Y										

