
Experiment 2. Practical implementation of adiabatic process 

 

1 Introduction  

The process is adiabatic when there is no heat exchange between the thermodynamic 

system and the surrounding (𝑄1−2   =  0). From this definition it follows that to implement the 

adiabatic process, e.g. gas expansion in a cylinder with a movable piston, the cylinder and the 

piston must be covered by the perfect heat insulator. 

Analogously, if a tank filled with gas (air) is emptied by opening the valve, the state of the 

gas in the tank changes according to adiabatic process ONLY when walls of the tank were 

perfectly thermally insulated. Because there is no perfect insulation, in practice, we can obtain 

an adiabatic process with some accuracy (never perfect adiabatic process). The indicator below 

is a measure of this approximation 

𝑌 =
|𝑄𝑧1−2|

|𝑈2 − 𝑈1|
 

(1) 

 

Where: 

|𝑄𝑧1−2|  - the total amount of heat (positive or negative) of the gas during Δτ, 

|𝑈2 − 𝑈1| total change in internal energy of the gas at the transition from state 1 to state 2. 

If Y = O, it means that adiabate was realised. Otherwise, depending on the specific value of this 

indicator, it is said that the adiabatic process was realised with approximation defined by Y. 

Finding the parameters required for the determination of Y is rather problematic. The 

problem is significantly simplified when the gas is considered as a perfect and the adiabatic 

equation is used as a reference (equation 2) 

p υ k = idem   (2) 

  
Where:  

𝑘 is an adiabatic constant, given by: 



𝑘 =
𝑐𝑝

𝑐𝑣
 

(2.1) 

The process is considered as adiabatic only for specific values of the exponent – i.e. 1.4 for air.  

2 The aim of the experiment  

The aim of the experiment is: 

• verify if the decompression of the air in tank is (approximate) an adiabatic process, 

• calculate the accuracy of the adiabatic process 

3 Description of the experiment  

 

Figure 1. Test stand, [1] tank A, [2] tank B, [3] pressure gauge, [4] connection valve A with B, [5] pump, [6] valve, [7] key 

 

1. Containers A and B with constant volume V should be inflated with air until the 

overpressures ΔpA1i and ΔpB1i (indicated in the measurement sheet) are adequately 

obtained. 

 
 

pA1i > pB1i ≥ po (3) 
 

 



Where: 

 𝑝𝑜 ambient pressure 

pA1i = po + ΔpA1i 

pB1i = po + ΔpB1i 

The gas temperature in the tanks after the end of pumping should be equal to ambient 

temperature, i.e.: 

tA1i = tB1i = to (4) 
 

2. Open the valve connecting tanks A and B for approx. 1 second. In such a 

case, a rapid flow between the containers occurs, which ends when the 

pressure equalises. i.e.  
 

pA2i = pB2i = pmi > po (5) 
 

The temperatures reach values of: 

tA2i < to, tB2i > to (6) 
 

Note: 

The average pressure (𝑝𝑚) is not measured because for a perfect gas it can be calculated from 

the formula: 

𝑝𝑚 =
𝑝𝐴1 + 𝑝𝐵1

2
 

(7) 

 

Derivation of the formula: 

In the time interval between valve opening and closing, no external work is performed, and the 

heat emission is negligible due to the high speed of the process. Therefore, it can be assumed 

that the total internal energy of the system does not change (however, it is only valid when the 

temperatures are in equilibrium – as explained in equation 4)  

For a perfect gas, the internal energy is given by the formula (8): 



𝑈 =
𝑝𝑉

𝑘 − 1
+ 𝑈0 

(8) 

 

Therefore, the condition of energy conservation for the system is expressed by the equation: 

𝑝𝐴1𝑉

𝑘 − 1
+

𝑝𝐵1𝑉

𝑘 − 1
=

𝑝𝐴2𝑉

𝑘 − 1
+

𝑝𝐵2𝑉

𝑘 − 1
 

(9) 

 

By substituting pA2 = pB2 = pm the desired equation is obtained. 

 

3. After closing the valve wait until the air temperature in the tanks equalises with ambient 

(equation 4) 

Then the ΔpA3i pressure can be read, and the pA3i value can be calculated: 

The above-described activities should be repeated for several different pressures pBi and the 

same initial pressure value pAi. 

 

 

Figure 2. Decompression process in container A 

 

 



The following dependencies apply: 

 

   

 

 

 

  

-constant, e.g. 800 mm H20 

 

Or 

 

The gas states "1", "2" are on the polytrop, therefore they fulfil the equation p υw = idem: 

 

Hence: 

 

 



The states  "1" and "3" of gas lies on the isotherm of t =t0. Therefore, they satisfy the equation:  

𝑝𝐴1𝑣𝐴1 = 𝑝𝐴3𝑖𝑣𝐴3𝑖 

Since : 

𝑣𝐴3𝑖 = 𝑣𝐴2𝑖  

then: 

𝑝𝐴1𝑣𝐴1 = 𝑝𝐴3𝑖𝑣𝐴2𝑖  

𝑣𝐴2𝑖

𝑣𝐴1
=

𝑝𝐴1

𝑝𝐴3𝑖
  

𝑝𝐴1

𝑝𝐴2𝑖
= (

𝑝𝐴1

𝑝𝐴3𝑖
)

𝑤
  and  

𝑝𝐴1

𝑝𝐴3𝑖
= (

𝑝𝐴1

𝑝𝐴3𝑖
)

𝑤
 

Logarithm results in: 

𝑙𝑛
𝑝𝐴1

𝑝𝑚𝑖
= 𝑤𝑙𝑛

𝑝𝐴1

𝑝𝐴3𝑖
 

Which can be further expressed as: 

 

 

 

 

 

 

 

 

 

 

 



4. Results elaboration  

1. The results of the measurements placed in the table 

(∆𝑝)𝐴𝑖 800 mmH2O To set 

(∆𝑝)𝐵1𝑖 0 150 300 450 600 To set 

(∆𝑝)𝐴3𝑖      To measure 

𝑃𝑚𝑖      To calculate 

𝑃𝐴𝑖      To calculate 

𝑃𝐴3𝑖        To calculate 

 

2. Calculate  

 

  

 

3. Insert the calculated values into the table and present on the graph: 

 

 

4. Determine the trend line in the form η = wξ + u (first order polynomial). 

5. Determine the analytical form of the trend line (equation) and coefficient of 

determination R2 

The value "w" determined in this way is the approximation of the "k". 

6. Determine the accuracy index Y and the measurement error b (determine the value of 

w, in relation to the expected value k) 

Adiabatic process accuracy 

As it was stated in the introduction the Y indicator determines the accuracy of the adiabatic 

process: 



 

Since w ≠ k and w = idem (because the process is polytrophic), the heat of transformation is 

 

and 

 

 

Since U2 - U1 = m cv (T2 - T1), substituting the above for "Y", yields: 

 

For air k = 1.4 

Determination of the relative measurement error: 

 


